对于大部分非金属矿物材料来讲,在传统工艺技术下,其粒径均是在微米量级以上,在这一量级以上的材料保持着传统的物理、化学、磁、电等特性,但一进入纳米级,材料的物理和化学性质则产生巨大的变化,一些有关纳米的特性也会随之而来。 目前,非金属矿物纳米化是非金属纳米矿物材料研究的基础和重点,已渐成为国内外学者研究的焦点,本文就非金属矿物的纳米化方法及原理作简要的概述,望对业内人士有一定的启发和帮助。 一、非金属矿物纳米化的方法 非金属矿物纳米化过程中仍存在许多尚未解决的难题,制备方法种类不多,一般分为物理法和化学法,具体制备方法和分类如下: 非金属矿物纳米化的方法及其分类 二、非金属矿物纳米化的原理 1、机械化学的定义及应用 日本学者神保元二指出:在粉碎过程中,同时存在固体表面结晶构造的变化,并且进行着化学的变化和物理化学的变化。在粉碎机械操作过程中产生的物质化学变化,称为机械化学。 机械化学法在材料学中的应用集中体现在以下几个方面:控制烧结性、电磁材料的研制、催化剂特性的变化、超细粉体的制备、粉体的表面改性、功能粉体合成、机械合金化、生物陶瓷材料的合成制备、晶型转变、环保材料的处理和制备等。 2、机械化学在超细粉碎过程中的原理及应用 由下表所示,随着微粒粒径的减小,所需机械破碎的碰撞速度显著提高。因此,采用加速碰撞的机械破碎法制备超细微粒是有限度的。目前,效果较好的气流粉碎机,平均粒径也只能超细到1µm左右。 而机械化学法通过在超细粉碎中产生的化学反应,不仅可以提高粉碎的效率,更能够突破极限,进一步减小微粒的粒径。因此对于非金属矿物来讲,是目前较为可行的纳米化方法之一,更是其纳米化发展的方向。 3、业内人士对机械化学作用的几点看法 机械化学作用对物质性质的影响在合成化学、表面化学、固体化学和材料科学的研究中都有反映,但表现形式有所不同。尽管目前对机械能的作用和耗散机理还不清楚,对众多的机械化学现象还不能定量和合理地解释,也无法明确界定其发生的临界条件,但对超细粉碎过程中机械化学作用的较一致的看法是: 1)形成表面和体相缺陷; 2)表面结构及化学组成发生变化; 3)表面电子受力被激发产生等离子体; 4)表面键断裂引起表面能量变化; 5)晶型转变; 6)形成纳米相复合层及非晶态表面; 7)机械化学作用有可能诱发在通常热化学条件下难以或不能进行的反应。 三、几种非金属矿物的纳米化改性 1、 电气石纳米化改性 目前,电气石的纳米化的研究不是很多,衫原俊雄等把直径为300nm的电气石微粒加入纤维丝中,可促进血液循环有效增强人体的生理功能;日本东京大学教授将100nm的电器石微粒混入纤维原料并制成织物。国内吴瑞华用0.3~10µm的电气石微粒与多孔材料载体制成一种电磁屏蔽材料;戴彦彤发明了利用电气石微粒和远红外粉发明了一种负氧离子远红外保健之物。 2、 磷酸铁锂的纳米化改性 磷酸铁锂纳米化后可以改善电子传导率,改善锂离子扩散速率,还可以提高比表面积,除此之外,纳米磷酸铁锂还有许多优势: 提高材料活性,促使一些难以进行的电极反应 可以改变锂离子和电子的化学势,造成电极电位的变动 扩大固熔体构成的范围,增强材料承受体积应力的能力 研究表明,以无机三氧化二铁为铁源得到的是磷酸铁锂颗粒,而以有机柠檬酸铁为铁源得到的是纳米级小颗粒,通过两种铁源的合理配比,可以使纳米小颗粒填充到大颗粒中,达到提高材料振实密度的目的。 结语 纳米非金属矿物的应用研究表明,由于纳米颗粒表面独特的性质,非金属矿物纳米化具有极好的应用前景,但是,困难还是存在于纳米颗粒间的有效分散方面。如果不能有效地将纳米颗粒分散于基体材料中,非金属矿物的纳米化优势往往就体现不出来,其有效利用还有待于业内专家的共同探讨与努力。 |